If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4u^2=4u+5
We move all terms to the left:
4u^2-(4u+5)=0
We get rid of parentheses
4u^2-4u-5=0
a = 4; b = -4; c = -5;
Δ = b2-4ac
Δ = -42-4·4·(-5)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{6}}{2*4}=\frac{4-4\sqrt{6}}{8} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{6}}{2*4}=\frac{4+4\sqrt{6}}{8} $
| (75)5=a | | 7w-7/2=-7/2w-5/3 | | X(x+7)=-6x+8 | | 4x-8x-4.9=x-3x-12.3 | | 12=-7j-9 | | 20(2x-8)=440 | | (-9+5.6)t+3.4t=0 | | x-19/5=-3 | | 3x+21-6x-60=180 | | -3.9=-2.8+1.4z | | -16x^2+64x+150=0 | | z/9+10=12 | | 3x^2+21x-180=0 | | x+(x/0.1)=25000000 | | 40x+190=25x+175 | | 2x+(35)=103 | | 1/3(18x12x)=6(2x-7) | | y-1/10=3/8 | | u+11=-10.74 | | n+4n-22=7N7n | | 9=m+17/2- | | 5/7x=-5/6 | | 8/9i+12=2/9=34 | | 6/z=1/6 | | 45+1.5x=-1.5 | | 1/3=2p | | -8=x+÷-2 | | p/1=2÷3 | | p/1/3=2 | | -(y÷4)+5=1 | | 1/3(x-3)=2 | | 98-t=35 |